$\nu = 77.15 \ (3)^{\circ}$ 

Z = 2

V = 1202.8 (4) Å<sup>3</sup>

Mo  $K\alpha$  radiation

 $0.27 \times 0.18 \times 0.13~\text{mm}$ 

10158 measured reflections

5296 independent reflections 5015 reflections with  $I > 2\sigma(I)$ 

 $\mu = 1.13 \text{ mm}^{-1}$ 

T = 173 K

 $R_{\rm int} = 0.037$ 

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

#### catena-Poly[[(2-amino-1,3-benzothiazole-6-carboxylato- $\kappa^2 O, O'$ )(2,2'bipyridyl- $\kappa^2 N, N'$ )cadmium]- $\mu$ -2-amino-1,3-benzothiazole-6-carboxylato- $\kappa^3 N^1$ :O, O']

## Dan Gao, Xin Fang,\* Ke-Ke Zhang, Li-Mao Cai and Jun-Dong Wang

Department of Chemistry, University of Fuzhou, Fuzhou350108, People's Republic of China

Correspondence e-mail: fangxin@fzu.edu.cn

Received 29 March 2012; accepted 16 April 2012

Key indicators: single-crystal X-ray study; T = 173 K; mean  $\sigma$ (C–C) = 0.005 Å; R factor = 0.040; wR factor = 0.088; data-to-parameter ratio = 15.0.

In the title coordination polymer,  $[Cd(C_8H_5N_2O_2S)_2(C_{10}H_8N_2)]_n$ , the Cd<sup>II</sup> ion is coordinated by a bidentate 2,2bipyridyl ligand, two *O*,*O'*-chelating 2-amino-1,3-benzothiazole-6-carboxylate (ABTC) ligands and one *N*-bonded ABTC ligand. The resulting CdN<sub>3</sub>O<sub>4</sub> coordination polyhedron approximates to a very distorted pentagonal bipramid with one O and one N atom in axial positions. One of the ABTC ligands is bridging to an adjacent metal atom, generating an infinite chain propagating in [100]. A three-dimensional network is constructed from N-H···O and N-H···N hydrogen bonds and aromatic  $\pi$ - $\pi$  stacking interactions [centroid–centroid separations = 3.641 (2) and 3.682 (3) Å].

#### **Related literature**

For our recent work on the design and sythesis of benzothiazole coordination networks, see: Fang *et al.* (2010); Lei *et al.* (2010). For the synthesis of the ligand, see: Das *et al.* (2003).



#### Experimental

Crystal data

 $\begin{bmatrix} Cd(C_8H_5N_2O_2S)_2(C_{10}H_8N_2) \end{bmatrix} \\ M_r = 640.87 \\ \text{Triclinic, } P\overline{1} \\ a = 9.977 (2) \text{ Å} \\ b = 11.715 (2) \text{ Å} \\ c = 11.734 (2) \text{ Å} \\ a \approx 65.28 (3)^{\circ} \\ \beta = 77.52 (3)^{\circ} \end{bmatrix}$ 

#### Data collection

```
Rigaku Saturn 724 CCD area-
detector diffractometer
Absorption correction: numerical
(NUMABS; Higashi, 2000)
T_{min} = 0.837, T_{max} = 1.000
```

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.040$ 352 parameters $wR(F^2) = 0.088$ H-atom parameters constrainedS = 1.08 $\Delta \rho_{max} = 1.50 \text{ e Å}^{-3}$ 5296 reflections $\Delta \rho_{min} = -0.72 \text{ e Å}^{-3}$ 

#### Table 1

Selected bond lengths (Å).

| Cd1-N3         | 2.345 (3) | Cd1-O2         | 2.415 (3) |
|----------------|-----------|----------------|-----------|
| $Cd1 - O3^{i}$ | 2.372 (2) | $Cd1 - O4^{i}$ | 2.422 (2) |
| Cd1-O1         | 2.381 (3) | Cd1-N2         | 2.484 (3) |
| Cd1-N1         | 2.391 (3) |                |           |

Symmetry code: (i) x + 1, y, z.

#### Table 2

Hydrogen-bond geometry (Å, °).

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |                                                                                         |                              |                              |                                                  |                                      |
|-------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------|------------------------------|--------------------------------------------------|--------------------------------------|
|                                                       | $D - H \cdots A$                                                                        | D-H                          | $H \cdot \cdot \cdot A$      | $D \cdots A$                                     | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|                                                       | $N6-H6A\cdotsO3^{ii}$ $N6-H6B\cdotsO3^{iii}$ $N4-H4A\cdotsO4^{i}$ $N4-H4B\cdotsN5^{iv}$ | 0.88<br>0.88<br>0.88<br>0.88 | 2.10<br>2.12<br>2.25<br>2.21 | 2.917 (4)<br>2.996 (4)<br>3.101 (4)<br>3.066 (4) | 155<br>173<br>162<br>163             |

Symmetry codes: (i) x + 1, y, z; (ii) -x, -y + 2, -z - 1; (iii) x + 1, y, z - 1; (iv) x, y - 1, z + 1.

#### metal-organic compounds

Data collection: *CrystalClear* (Rigaku, 2007); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEX* (McArdle, 1995); software used to prepare material for publication: *SHELXL97*.

The authors gratefully acknowledge financial support from the Foundations of Fuzhou University (2010-XQ-06) and the Education Department of Fujian Province (JA11020).

#### References

- Das, J., Lin, J., Moquin, R. V., Shen, Z., Spergel, S. H., Wityak, J., Doweyko, A. M., DeFex, H. F., Fang, Q., Pang, S., Pitt, S., Shen, D. R., Schieven, G. L. & Barrish, J. C. (2003). *Bioorg. Med. Chem. Lett.* 13, 2145–2149.
- Fang, X., Lei, C., Yu, H.-Y., Huang, M.-D. & Wang, J.-D. (2010). Acta Cryst. E66, 01239–01240.
- Higashi, T. (2000). NUMABS. Rigaku Corporation, Tokyo, Japan.
- Lei, C., Fang, X., Yu, H.-Y., Huang, M.-D. & Wang, J.-D. (2010). Acta Cryst. E66, 0914.
- McArdle, P. (1995). J. Appl. Cryst. 28, 65.
- Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6715).

### supplementary materials

Acta Cryst. (2012). E68, m641-m642 [doi:10.1107/S160053681201642X]

# *catena*-Poly[[(2-amino-1,3-benzothiazole-6-carboxylato- $\kappa^2 O$ ,O')(2,2'-bipyridyl- $\kappa^2 N$ ,N')cadmium]- $\mu$ -2-amino-1,3-benzothiazole-6-carboxylato- $\kappa^3 N^1$ :O,O']

#### Dan Gao, Xin Fang, Ke-Ke Zhang, Li-Mao Cai and Jun-Dong Wang

#### Comment

As part of our ongoing studies of benzothiaole-based coordination networks (Fang *et al.*, 2010; Lei *et al.*, 2010), we now report the structure of a coordination polymer of cadmium and 2-amino-1,3-benzothiazole-6-carboxylate (ABTC) with 2,2'-bipyridine (bpy) as second ligand.

The polymer is a triclinic system crystal and it crystallizes in the space group of P-1. In the asymmetric unit (Fig. 1), center Cd (II) is seven-coordinated with ( $\kappa$ 1,  $\kappa$ 2)- $\mu$ 2 coordination model, where one bpy provides two N atoms, one ABTC affords two O atoms, and the another ABTC affords two O atoms and one N atom of thiazole. The four Cd—O bonds are Cd1—O1, Cd1—O2, Cd1—O3, and Cd1—O4, with distance of 2.380 (7) Å, 2.415 (7) Å, 2.371 (3) Å, and 2.422 (6) Å, respectively. The three Cd—N bonds are Cd1—N1, Cd1—N2, and Cd1—N3, with distance of 2.390 (8) Å, 2.484 (1) Å, and 2.345 (6) Å, respectively, where the Cd1—N2 distance is slightly longer than common distance of Cd and N.

The asymmetric units are forming chains extending along the *a* axis (Fig. 2), through the one ABTC coordinated to two Cd(II) simultaneously by O from carboxylate and N from thiazole ring, respectively. Furthermore, three-dimensional supermolecular net (Fig. 3) are constructed by hydrogen bonds, as listed in Table 1, and  $\pi$ - $\pi$  interactions [between thiazole and benzene rings (with certroid-centroid distance of 3.682 (3) Å and centroid-ring plane distance of 3.350 (9) and 3.404 (3) Å), and between the thiazole and bpy rings (with certroid-centroid distance of 3.641 (2) Å and centroid-ring plane distance of 3.478 (9) and 3.331 (7) Å)].

#### **Experimental**

The 2-aminobenzothiazole-6-carboxylic acid ligand was obtained by hydrolyzing of ethyl-2-amion-1,3-benzothiazole-6-carboxylate (Das *et al.* 2003). The mixture of cadmium carbonate (0.0172 g, 0.1 mol), 2-aminobenzothiazole-6-carboxylic acid (0.0388 g, 0.2 mol), 2,2'-bipyridine (0.0160 g, 0.1 mol) and  $H_2O$  (8 ml) was sealed in a 23 ml stainless-steel reactor with Teflon liner and heated (283 K per hour) from room temperature to 423 K and kept at 423 K for 4 days, then cooled (279 K per hour) to room temperature. Colorless prisms were obtained.

#### Refinement

All hydrogen atoms were positioned geometrically and refined in a riding model approximation with  $U_{iso}$  (H) = 1.2  $U_{eq}$  (C) or  $U_{eq}$  (N).

#### **Computing details**

Data collection: *CrystalClear* (Rigaku, 2007); cell refinement: *CrystalClear* (Rigaku, 2007); data reduction: *CrystalClear* (Rigaku, 2007); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure:

*SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEX* (McArdle, 1995); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008).



#### Figure 1

The coordination environment of Cd atom, drawn with 50% probability displacement ellipsoids. [Symmetry codes: (i)1 + x,y,z; (ii)-1 + x,y,z]



#### Figure 2

A Chain formed by Cd1—N3 bond. H atoms are omitted.



#### Figure 3

Three-dimensional net with hydrogen bonds and  $\pi$ - $\pi$  interactions. H atoms are omitted except those forming hydrogen bonds.

## *catena*-Poly[[(2-amino-1,3-benzothiazole-6-carboxylato- $\kappa^2 O, O'$ )(2,2'-bipyridyl- $\kappa^2 N, N'$ )cadmium]- $\mu$ -2-amino-1,3-benzothiazole-6-carboxylato- $\kappa^3 N^1$ :O, O']

| Z = 2                                                 |
|-------------------------------------------------------|
| F(000) = 656.0                                        |
| $D_{\rm x} = 1.770 {\rm ~Mg} {\rm ~m}^{-3}$           |
| Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| Cell parameters from 4682 reflections                 |
| $\theta = 3.1 - 27.6^{\circ}$                         |
| $\mu = 1.13 \text{ mm}^{-1}$                          |
| T = 173  K                                            |
| Prism, colourless                                     |
| $0.27 \times 0.18 \times 0.13 \text{ mm}$             |
|                                                       |
|                                                       |

Data collection

| Rigaku Saturn 724 CCD area-detector<br>diffractometer<br>Radiation source: fine-focus sealed tube<br>Graphite monochromator<br>Detector resolution: 28.5714 pixels mm <sup>-1</sup><br>dtprofit.ref scans<br>Absorption correction: numerical<br>( <i>NUMABS</i> ; Higashi, 2000)<br>$T_{min} = 0.837, T_{max} = 1.000$ | 10158 measured reflections<br>5296 independent reflections<br>5015 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.037$<br>$\theta_{max} = 27.6^{\circ}, \theta_{min} = 3.6^{\circ}$<br>$h = -12 \rightarrow 12$<br>$k = -14 \rightarrow 15$<br>$l = -14 \rightarrow 15$ |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Refinement                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                            |
| Refinement on $F^2$<br>Least-squares matrix: full<br>$R[F^2 > 2\sigma(F^2)] = 0.040$<br>$wR(F^2) = 0.088$                                                                                                                                                                                                               | Secondary atom site location: difference Fourier<br>map<br>Hydrogen site location: inferred from<br>neighbouring sites                                                                                                                                                     |
| S = 1.08                                                                                                                                                                                                                                                                                                                | H-atom parameters constrained                                                                                                                                                                                                                                              |
| 5296 reflections<br>352 parameters                                                                                                                                                                                                                                                                                      | $w = 1/[\sigma^2(F_o^2) + (0.0263P)^2 + 2.5814P]$<br>where $P = (F_o^2 + 2F_c^2)/3$                                                                                                                                                                                        |
| 0 restraints                                                                                                                                                                                                                                                                                                            | $(\Delta/\sigma)_{\rm max} = 0.001$                                                                                                                                                                                                                                        |
| Primary atom site location: structure-invariant direct methods                                                                                                                                                                                                                                                          | $\Delta \rho_{\text{max}} = 1.50 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.72 \text{ e } \text{\AA}^{-3}$                                                                                                                                                 |

#### Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor w*R* and goodness of fit S are based on  $F^2$ . conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

|     | x           | У           | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|-------------|-------------|--------------|-----------------------------|--|
| Cd1 | 0.30365 (2) | 0.70429 (2) | 0.09531 (2)  | 0.01412 (8)                 |  |
| S2  | 0.41833 (9) | 0.83130 (8) | -0.62591 (8) | 0.01725 (17)                |  |
| 01  | 0.3596 (3)  | 0.7157 (2)  | -0.1166 (2)  | 0.0248 (6)                  |  |
| O2  | 0.2554 (3)  | 0.8927 (3)  | -0.0912 (2)  | 0.0271 (6)                  |  |
| N1  | 0.1528 (3)  | 0.8327 (3)  | 0.1983 (3)   | 0.0155 (6)                  |  |
| N2  | 0.2833 (3)  | 0.5972 (3)  | 0.3298 (3)   | 0.0180 (6)                  |  |
| N5  | 0.3521 (3)  | 1.0786 (3)  | -0.6983 (3)  | 0.0158 (6)                  |  |
| N6  | 0.4267 (3)  | 1.0043 (3)  | -0.8634 (3)  | 0.0213 (6)                  |  |
| H6A | 0.4161      | 1.0813      | -0.9227      | 0.026*                      |  |
| H6B | 0.4567      | 0.9382      | -0.8844      | 0.026*                      |  |
| S1  | 0.06488 (8) | 0.34375 (7) | 0.19139 (8)  | 0.01547 (16)                |  |
| N3  | 0.1635 (3)  | 0.5537 (3)  | 0.1288 (3)   | 0.0140 (5)                  |  |
| N4  | 0.3306 (3)  | 0.3686 (3)  | 0.1717 (3)   | 0.0178 (6)                  |  |
| H4A | 0.3994      | 0.4110      | 0.1563       | 0.021*                      |  |
| H4B | 0.3471      | 0.2856      | 0.1940       | 0.021*                      |  |
| 04  | -0.4784 (2) | 0.5623 (2)  | 0.1301 (2)   | 0.0175 (5)                  |  |
|     |             |             |              |                             |  |

| O3  | -0.4823 (2) | 0.7664 (2) | 0.0858 (2)  | 0.0172 (5) |
|-----|-------------|------------|-------------|------------|
| C1  | 0.1130 (3)  | 0.9574 (3) | 0.1355 (3)  | 0.0179 (7) |
| H1  | 0.1300      | 0.9911     | 0.0456      | 0.021*     |
| C2  | 0.0484 (4)  | 1.0395 (3) | 0.1951 (3)  | 0.0196 (7) |
| H2  | 0.0224      | 1.1273     | 0.1470      | 0.023*     |
| C3  | 0.0224 (4)  | 0.9910 (3) | 0.3263 (3)  | 0.0201 (7) |
| H3  | -0.0199     | 1.0452     | 0.3699      | 0.024*     |
| C4  | 0.0592 (3)  | 0.8621 (3) | 0.3925 (3)  | 0.0195 (7) |
| H4  | 0.0400      | 0.8262     | 0.4824      | 0.023*     |
| C5  | 0.1251 (3)  | 0.7848 (3) | 0.3261 (3)  | 0.0160 (6) |
| C6  | 0.1758 (4)  | 0.6489 (3) | 0.3931 (3)  | 0.0171 (7) |
| C7  | 0.1184 (4)  | 0.5801 (4) | 0.5154 (3)  | 0.0245 (8) |
| H7  | 0.0404      | 0.6179     | 0.5569      | 0.029*     |
| C8  | 0.1773 (4)  | 0.4542 (4) | 0.5763 (3)  | 0.0267 (8) |
| H8  | 0.1392      | 0.4042     | 0.6596      | 0.032*     |
| C9  | 0.2915 (4)  | 0.4038 (3) | 0.5134 (3)  | 0.0249 (8) |
| H9  | 0.3361      | 0.3195     | 0.5541      | 0.030*     |
| C10 | 0.3402 (4)  | 0.4771 (3) | 0.3908 (4)  | 0.0236 (7) |
| H10 | 0.4178      | 0.4408     | 0.3475      | 0.028*     |
| C11 | 0.0212 (3)  | 0.5869 (3) | 0.1247 (3)  | 0.0144 (6) |
| C12 | -0.0528 (3) | 0.7099 (3) | 0.0958 (3)  | 0.0155 (6) |
| H12 | -0.0063     | 0.7795     | 0.0771      | 0.019*     |
| C13 | -0.1952 (3) | 0.7287 (3) | 0.0949 (3)  | 0.0163 (6) |
| H13 | -0.2461     | 0.8115     | 0.0777      | 0.020*     |
| C14 | -0.2650 (3) | 0.6284 (3) | 0.1187 (3)  | 0.0150 (6) |
| C15 | -0.1930 (3) | 0.5050 (3) | 0.1483 (3)  | 0.0147 (6) |
| H15 | -0.2395     | 0.4360     | 0.1651      | 0.018*     |
| C16 | -0.0512 (3) | 0.4864 (3) | 0.1522 (3)  | 0.0135 (6) |
| C17 | 0.2006 (3)  | 0.4302 (3) | 0.1613 (3)  | 0.0139 (6) |
| C18 | 0.3359 (3)  | 1.0268 (3) | -0.5664 (3) | 0.0163 (6) |
| C19 | 0.2953 (4)  | 1.0964 (3) | -0.4897 (3) | 0.0193 (7) |
| H19 | 0.2735      | 1.1864     | -0.5264     | 0.023*     |
| C20 | 0.2872 (3)  | 1.0324 (3) | -0.3587 (3) | 0.0191 (7) |
| H20 | 0.2600      | 1.0796     | -0.3064     | 0.023*     |
| C21 | 0.3182 (3)  | 0.9002 (3) | -0.3027 (3) | 0.0176 (7) |
| C22 | 0.3572 (3)  | 0.8301 (3) | -0.3795 (3) | 0.0183 (7) |
| H22 | 0.3774      | 0.7400     | -0.3426     | 0.022*     |
| C23 | 0.3659 (3)  | 0.8933 (3) | -0.5094 (3) | 0.0161 (6) |
| C24 | 0.3974 (3)  | 0.9876 (3) | -0.7413 (3) | 0.0172 (7) |
| C25 | 0.3105 (3)  | 0.8324 (3) | -0.1607 (3) | 0.0187 (7) |
| C26 | -0.4178 (3) | 0.6531 (3) | 0.1118 (3)  | 0.0136 (6) |

Atomic displacement parameters  $(Å^2)$ 

| $U^{11}$     | $U^{22}$                                                                                   | $U^{33}$                                                                                                                                                                                                                        | $U^{12}$                                                                                                                                                                                                                                                                                                                     | $U^{13}$                                              | $U^{23}$                                              |
|--------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
| 0.01171 (12) | 0.01595 (13)                                                                               | 0.01451 (12)                                                                                                                                                                                                                    | -0.00318 (9)                                                                                                                                                                                                                                                                                                                 | -0.00112 (8)                                          | -0.00551 (9)                                          |
| 0.0197 (4)   | 0.0161 (4)                                                                                 | 0.0165 (4)                                                                                                                                                                                                                      | -0.0033 (3)                                                                                                                                                                                                                                                                                                                  | -0.0023 (3)                                           | -0.0066 (3)                                           |
| 0.0318 (15)  | 0.0235 (13)                                                                                | 0.0170 (12)                                                                                                                                                                                                                     | -0.0069 (11)                                                                                                                                                                                                                                                                                                                 | -0.0032 (11)                                          | -0.0045 (10)                                          |
| 0.0271 (14)  | 0.0345 (15)                                                                                | 0.0163 (12)                                                                                                                                                                                                                     | 0.0047 (12)                                                                                                                                                                                                                                                                                                                  | -0.0040 (11)                                          | -0.0107 (11)                                          |
| 0.0119 (13)  | 0.0193 (14)                                                                                | 0.0155 (13)                                                                                                                                                                                                                     | -0.0037 (11)                                                                                                                                                                                                                                                                                                                 | -0.0031 (11)                                          | -0.0057 (11)                                          |
|              | U <sup>11</sup><br>0.01171 (12)<br>0.0197 (4)<br>0.0318 (15)<br>0.0271 (14)<br>0.0119 (13) | $\begin{array}{c cccc} U^{11} & U^{22} \\ \hline 0.01171 \ (12) & 0.01595 \ (13) \\ 0.0197 \ (4) & 0.0161 \ (4) \\ 0.0318 \ (15) & 0.0235 \ (13) \\ 0.0271 \ (14) & 0.0345 \ (15) \\ 0.0119 \ (13) & 0.0193 \ (14) \end{array}$ | $\begin{array}{c ccccc} U^{11} & U^{22} & U^{33} \\ \hline 0.01171 \ (12) & 0.01595 \ (13) & 0.01451 \ (12) \\ 0.0197 \ (4) & 0.0161 \ (4) & 0.0165 \ (4) \\ 0.0318 \ (15) & 0.0235 \ (13) & 0.0170 \ (12) \\ 0.0271 \ (14) & 0.0345 \ (15) & 0.0163 \ (12) \\ 0.0119 \ (13) & 0.0193 \ (14) & 0.0155 \ (13) \\ \end{array}$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

| N2         | 0.0215 (15) | 0.0161 (14) | 0.0160 (13) | -0.0020 (11) | -0.0040 (11) | -0.0057 (11) |
|------------|-------------|-------------|-------------|--------------|--------------|--------------|
| N5         | 0.0151 (14) | 0.0150 (13) | 0.0162 (13) | -0.0039 (11) | -0.0023 (11) | -0.0042 (11) |
| N6         | 0.0279 (16) | 0.0182 (14) | 0.0164 (14) | -0.0030 (12) | 0.0008 (12)  | -0.0075 (12) |
| <b>S</b> 1 | 0.0135 (4)  | 0.0134 (4)  | 0.0192 (4)  | -0.0021 (3)  | -0.0022 (3)  | -0.0061 (3)  |
| N3         | 0.0088 (13) | 0.0160 (13) | 0.0164 (13) | -0.0019 (10) | -0.0019 (10) | -0.0055 (11) |
| N4         | 0.0134 (13) | 0.0166 (14) | 0.0221 (14) | -0.0005 (11) | -0.0021 (11) | -0.0074 (11) |
| O4         | 0.0112 (11) | 0.0196 (12) | 0.0232 (12) | -0.0049 (9)  | -0.0019 (9)  | -0.0086 (10) |
| O3         | 0.0142 (11) | 0.0171 (11) | 0.0198 (12) | -0.0035 (9)  | -0.0024 (9)  | -0.0061 (9)  |
| C1         | 0.0201 (17) | 0.0195 (16) | 0.0151 (15) | -0.0069 (14) | -0.0032 (13) | -0.0053 (13) |
| C2         | 0.0195 (17) | 0.0151 (16) | 0.0229 (17) | -0.0007 (13) | -0.0034 (14) | -0.0069 (13) |
| C3         | 0.0178 (17) | 0.0219 (17) | 0.0222 (17) | -0.0016 (14) | -0.0015 (14) | -0.0113 (14) |
| C4         | 0.0172 (17) | 0.0248 (18) | 0.0160 (16) | -0.0001 (14) | -0.0013 (13) | -0.0094 (14) |
| C5         | 0.0128 (15) | 0.0195 (16) | 0.0155 (15) | -0.0036 (13) | -0.0018 (12) | -0.0061 (13) |
| C6         | 0.0182 (17) | 0.0178 (16) | 0.0170 (16) | -0.0017 (13) | -0.0053 (13) | -0.0076 (13) |
| C7         | 0.028 (2)   | 0.0244 (18) | 0.0159 (16) | 0.0004 (15)  | -0.0001 (15) | -0.0068 (14) |
| C8         | 0.038 (2)   | 0.0246 (19) | 0.0149 (16) | -0.0051 (16) | -0.0040 (15) | -0.0046 (14) |
| C9         | 0.033 (2)   | 0.0175 (17) | 0.0215 (18) | 0.0008 (15)  | -0.0111 (16) | -0.0038 (14) |
| C10        | 0.0255 (19) | 0.0206 (17) | 0.0261 (18) | 0.0006 (15)  | -0.0077 (15) | -0.0105 (15) |
| C11        | 0.0148 (16) | 0.0154 (15) | 0.0126 (14) | -0.0040 (12) | -0.0028 (12) | -0.0038 (12) |
| C12        | 0.0189 (17) | 0.0134 (15) | 0.0138 (15) | -0.0058 (13) | -0.0024 (12) | -0.0034 (12) |
| C13        | 0.0179 (17) | 0.0167 (16) | 0.0132 (15) | -0.0043 (13) | -0.0015 (12) | -0.0042 (12) |
| C14        | 0.0142 (16) | 0.0186 (16) | 0.0120 (14) | -0.0039 (13) | -0.0017 (12) | -0.0054 (12) |
| C15        | 0.0176 (16) | 0.0155 (15) | 0.0129 (14) | -0.0064 (13) | 0.0005 (12)  | -0.0066 (12) |
| C16        | 0.0139 (15) | 0.0133 (15) | 0.0117 (14) | -0.0019 (12) | -0.0014 (12) | -0.0034 (12) |
| C17        | 0.0119 (15) | 0.0186 (16) | 0.0116 (14) | -0.0017 (12) | -0.0017 (12) | -0.0065 (12) |
| C18        | 0.0146 (16) | 0.0208 (17) | 0.0151 (15) | -0.0058 (13) | -0.0010 (12) | -0.0075 (13) |
| C19        | 0.0180 (17) | 0.0204 (17) | 0.0215 (17) | -0.0031 (14) | -0.0025 (14) | -0.0101 (14) |
| C20        | 0.0171 (17) | 0.0240 (18) | 0.0190 (16) | -0.0027 (14) | -0.0013 (13) | -0.0118 (14) |
| C21        | 0.0128 (16) | 0.0245 (17) | 0.0153 (16) | -0.0021 (13) | -0.0012 (13) | -0.0083 (13) |
| C22        | 0.0168 (17) | 0.0170 (16) | 0.0164 (16) | -0.0034 (13) | -0.0006 (13) | -0.0024 (13) |
| C23        | 0.0160 (16) | 0.0172 (16) | 0.0159 (15) | -0.0028 (13) | -0.0026 (13) | -0.0066 (13) |
| C24        | 0.0157 (16) | 0.0204 (17) | 0.0177 (16) | -0.0067 (13) | -0.0042 (13) | -0.0066 (13) |
| C25        | 0.0097 (15) | 0.0285 (19) | 0.0176 (16) | -0.0045 (14) | -0.0020 (13) | -0.0077 (14) |
| C26        | 0.0128 (15) | 0.0168 (15) | 0.0104 (14) | -0.0022 (12) | -0.0010 (12) | -0.0046 (12) |

#### Geometric parameters (Å, °)

| Cd1—N3              | 2.345 (3) | C3—C4   | 1.384 (5) |
|---------------------|-----------|---------|-----------|
| Cd1-O3 <sup>i</sup> | 2.372 (2) | С3—Н3   | 0.9500    |
| Cd101               | 2.381 (3) | C4—C5   | 1.401 (5) |
| Cd1—N1              | 2.391 (3) | C4—H4   | 0.9500    |
| Cd1—O2              | 2.415 (3) | C5—C6   | 1.474 (5) |
| Cd1—O4 <sup>i</sup> | 2.422 (2) | C6—C7   | 1.386 (5) |
| Cd1—N2              | 2.484 (3) | C7—C8   | 1.395 (5) |
| S2—C23              | 1.739 (3) | С7—Н7   | 0.9500    |
| S2—C24              | 1.763 (4) | C8—C9   | 1.376 (5) |
| O1—C25              | 1.264 (4) | C8—H8   | 0.9500    |
| O2—C25              | 1.258 (4) | C9—C10  | 1.376 (5) |
| N1-C1               | 1.342 (4) | С9—Н9   | 0.9500    |
| N1—C5               | 1.352 (4) | C10—H10 | 0.9500    |
|                     |           |         |           |

| N2—C10                       | 1.339 (4)                    | C11—C12                 | 1.402 (5)            |
|------------------------------|------------------------------|-------------------------|----------------------|
| N2—C6                        | 1.346 (4)                    | C11—C16                 | 1.404 (4)            |
| N5—C24                       | 1.316 (4)                    | C12—C13                 | 1.390 (5)            |
| N5—C18                       | 1.392 (4)                    | C12—H12                 | 0.9500               |
| N6-C24                       | 1.337 (4)                    | C13—C14                 | 1.396 (4)            |
| N6—H6A                       | 0.8800                       | C13—H13                 | 0.9500               |
| N6—H6B                       | 0.8800                       | C14—C15                 | 1.397 (5)            |
| S1—C16                       | 1.753 (3)                    | C14—C26                 | 1.500 (4)            |
| S1—C17                       | 1.758 (3)                    | C15—C16                 | 1.390 (4)            |
| N3—C17                       | 1.318 (4)                    | C15—H15                 | 0.9500               |
| N3—C11                       | 1.392 (4)                    | C18—C19                 | 1.396 (5)            |
| N4—C17                       | 1.340 (4)                    | C18—C23                 | 1.410 (5)            |
| N4—H4A                       | 0.8800                       | C19—C20                 | 1.393 (5)            |
| N4—H4B                       | 0.8800                       | С19—Н19                 | 0.9500               |
| O4—C26                       | 1.258 (4)                    | C20—C21                 | 1.396 (5)            |
| O4—Cd1 <sup>ii</sup>         | 2.422 (2)                    | C20—H20                 | 0.9500               |
| 03—C26                       | 1.279 (4)                    | $C_{21} - C_{22}$       | 1.401 (5)            |
| $O3-Cd1^{ii}$                | 2.372 (2)                    | $C_{21} = C_{25}$       | 1.509 (5)            |
| C1-C2                        | 1 387 (5)                    | $C^{22}$ $C^{23}$       | 1.380(5)             |
| C1—H1                        | 0.9500                       | C22_H22                 | 0.9500               |
| $C^2 - C^3$                  | 1 386 (5)                    | $C_{26}$ $C_{d1i}$      | 2.742(3)             |
| C2—H2                        | 0.9500                       | 020 041                 | 2.7.12 (3)           |
| 02 112                       | 0.9500                       |                         |                      |
| $N_{3}$ Cd1 $- O_{3}^{i}$    | 153 13 (9)                   | N1                      | 116.9(3)             |
| $N_3 - C_{d1} - O_1$         | 85 88 (10)                   | $C_{4}$ $C_{5}$ $C_{6}$ | 110.9(3)<br>121.3(3) |
| $O_{3^{i}}$ $C_{41}$ $O_{1}$ | 92.07(9)                     | N2 C6 C7                | 121.3(3)<br>122.2(3) |
| $N_3  Cd1  N_1$              | $\frac{92.07(9)}{101.10(0)}$ | $N_2 = C_6 = C_7$       | 122.2(3)<br>116.1(3) |
| $O_{2i}^{i}$ Cd1 N1          | 101.19(9)                    | 112 - 00 - 05           | 110.1(3)<br>121.7(3) |
| $O_1  Cd_1  N_1$             | 135.03(9)                    | $C_{1} = C_{1} = C_{2}$ | 121.7(3)<br>1187(3)  |
| $N_{2} C_{41} O_{2}$         | 133.28(9)<br>110.44(10)      | C6 C7 H7                | 120.6                |
| $N_3 = C_4 = 0_2$            | 110.44 (10)<br>80.76 (0)     | $C_0 - C_1 - H_1$       | 120.0                |
| 03 - Cd1 - 02                | 54.03 (0)                    | $C_{0} = C_{1} = H_{1}$ | 120.0<br>118.7(2)    |
| $V_1 = Cd_1 = O_2$           | 54.95(9)                     | $C_{9} = C_{8} = C_{7}$ | 110.7 (5)            |
| N1 - Cd1 - O2                | 81.78(9)                     | $C_{2}$                 | 120.0                |
| $N_{3} = C_{01} = 04^{1}$    | 98.05 (9)                    | $C^{2}$                 | 120.0                |
| 03 - 01 - 04                 | 55.09 (8)<br>85.22 (0)       | $C_8 = C_9 = C_{10}$    | 119.1 (3)            |
| $01 - 04^{\circ}$            | 85.33 (9)                    | $C_8 = C_9 = H_9$       | 120.4                |
| $N1 - Ca1 - O4^{i}$          | 135.73 (9)                   | C10—C9—H9               | 120.4                |
| $02$ —Cd1— $04^{\circ}$      | 127.19 (9)                   | N2-C10-C9               | 123.0 (3)            |
| N3—Cd1—N2                    | 80.49 (10)                   | N2—C10—H10              | 118.5                |
| O3 <sup>1</sup> —Cd1—N2      | 91.08 (9)                    | C9—C10—H10              | 118.5                |
| O1—Cd1—N2                    | 155.59 (9)                   | N3—C11—C12              | 125.5 (3)            |
| N1—Cd1—N2                    | 67.79 (10)                   | N3—C11—C16              | 115.7 (3)            |
| O2—Cd1—N2                    | 149.31 (9)                   | C12—C11—C16             | 118.8 (3)            |
| $O4^{i}$ —Cd1—N2             | 76.72 (9)                    | C13—C12—C11             | 119.0 (3)            |
| N3—Cd1—C25                   | 99.34 (10)                   | C13—C12—H12             | 120.5                |
| O3 <sup>1</sup> —Cd1—C25     | 90.67 (9)                    | C11—C12—H12             | 120.5                |
| O1—Cd1—C25                   | 27.53 (9)                    | C12—C13—C14             | 121.5 (3)            |
| N1—Cd1—C25                   | 108.67 (10)                  | C12—C13—H13             | 119.3                |
| O2—Cd1—C25                   | 27.41 (10)                   | C14—C13—H13             | 119.3                |

| O4 <sup>i</sup> —Cd1—C25     | 106.96 (10) | C13—C14—C15               | 120.2 (3)  |
|------------------------------|-------------|---------------------------|------------|
| N2—Cd1—C25                   | 176.27 (10) | C13—C14—C26               | 120.0 (3)  |
| N3—Cd1—C26 <sup>i</sup>      | 125.36 (10) | C15—C14—C26               | 119.8 (3)  |
| $O3^i$ —Cd1—C26 <sup>i</sup> | 27.78 (9)   | C16—C15—C14               | 118.0 (3)  |
| O1-Cd1-C26 <sup>i</sup>      | 88.58 (10)  | C16—C15—H15               | 121.0      |
| N1-Cd1-C26 <sup>i</sup>      | 119.61 (9)  | C14—C15—H15               | 121.0      |
| O2-Cd1-C26 <sup>i</sup>      | 110.00 (10) | C15—C16—C11               | 122.4 (3)  |
| $O4^i$ —Cd1—C26 <sup>i</sup> | 27.31 (8)   | C15—C16—S1                | 128.6 (2)  |
| N2-Cd1-C26 <sup>i</sup>      | 83.04 (10)  | C11—C16—S1                | 109.0 (2)  |
| C25—Cd1—C26 <sup>i</sup>     | 99.99 (10)  | N3—C17—N4                 | 125.4 (3)  |
| C23—S2—C24                   | 88.73 (16)  | N3—C17—S1                 | 115.4 (2)  |
| C25—O1—Cd1                   | 92.0 (2)    | N4—C17—S1                 | 119.2 (2)  |
| C25—O2—Cd1                   | 90.5 (2)    | N5—C18—C19                | 125.3 (3)  |
| C1—N1—C5                     | 118.0 (3)   | N5—C18—C23                | 115.5 (3)  |
| C1—N1—Cd1                    | 121.9 (2)   | C19—C18—C23               | 119.2 (3)  |
| C5—N1—Cd1                    | 119.2 (2)   | C20—C19—C18               | 119.2 (3)  |
| C10—N2—C6                    | 118.1 (3)   | С20—С19—Н19               | 120.4      |
| C10—N2—Cd1                   | 123.5 (2)   | С18—С19—Н19               | 120.4      |
| C6—N2—Cd1                    | 114.9 (2)   | C19—C20—C21               | 121.4 (3)  |
| C24—N5—C18                   | 109.9 (3)   | С19—С20—Н20               | 119.3      |
| C24—N6—H6A                   | 120.0       | C21—C20—H20               | 119.3      |
| C24—N6—H6B                   | 120.0       | C20—C21—C22               | 119.5 (3)  |
| H6A—N6—H6B                   | 120.0       | C20—C21—C25               | 120.7 (3)  |
| C16—S1—C17                   | 89.23 (15)  | C22—C21—C25               | 119.8 (3)  |
| C17—N3—C11                   | 110.7 (3)   | C23—C22—C21               | 119.3 (3)  |
| C17—N3—Cd1                   | 127.6 (2)   | С23—С22—Н22               | 120.4      |
| C11—N3—Cd1                   | 121.6 (2)   | C21—C22—H22               | 120.4      |
| C17—N4—H4A                   | 120.0       | C22—C23—C18               | 121.4 (3)  |
| C17—N4—H4B                   | 120.0       | C22—C23—S2                | 128.8 (3)  |
| H4A—N4—H4B                   | 120.0       | C18—C23—S2                | 109.7 (2)  |
| C26—O4—Cd1 <sup>ii</sup>     | 90.62 (19)  | N5—C24—N6                 | 125.6 (3)  |
| C26—O3—Cd1 <sup>ii</sup>     | 92.41 (19)  | N5—C24—S2                 | 116.1 (3)  |
| N1—C1—C2                     | 123.4 (3)   | N6—C24—S2                 | 118.3 (3)  |
| N1—C1—H1                     | 118.3       | O2—C25—O1                 | 122.6 (3)  |
| C2—C1—H1                     | 118.3       | O2—C25—C21                | 119.5 (3)  |
| C3—C2—C1                     | 118.6 (3)   | O1—C25—C21                | 117.9 (3)  |
| С3—С2—Н2                     | 120.7       | O2—C25—Cd1                | 62.11 (18) |
| С1—С2—Н2                     | 120.7       | O1—C25—Cd1                | 60.52 (18) |
| C4—C3—C2                     | 118.8 (3)   | C21—C25—Cd1               | 178.2 (2)  |
| С4—С3—Н3                     | 120.6       | O4—C26—O3                 | 121.9 (3)  |
| С2—С3—Н3                     | 120.6       | O4—C26—C14                | 119.2 (3)  |
| C3—C4—C5                     | 119.5 (3)   | O3—C26—C14                | 118.9 (3)  |
| C3—C4—H4                     | 120.3       | O4—C26—Cd1 <sup>ii</sup>  | 62.07 (17) |
| C5—C4—H4                     | 120.3       | O3—C26—Cd1 <sup>ii</sup>  | 59.82 (16) |
| N1—C5—C4                     | 121.7 (3)   | C14—C26—Cd1 <sup>ii</sup> | 178.6 (2)  |
| N3—Cd1—O1—C25                | 119.4 (2)   | C17—N3—C11—C12            | 178.7 (3)  |
| O3 <sup>i</sup> —Cd1—O1—C25  | -87.5 (2)   | Cd1—N3—C11—C12            | 2.8 (4)    |
| N1-Cd1-O1-C25                | 17.6 (3)    | C17—N3—C11—C16            | -1.3 (4)   |

| O2—Cd1—O1—C25                                    | 0.78 (19)   | Cd1—N3—C11—C16                             | -177.1(2)         |
|--------------------------------------------------|-------------|--------------------------------------------|-------------------|
| $O4^{i}$ —Cd1—O1—C25                             | -142.2(2)   | N3—C11—C12—C13                             | 179.8 (3)         |
| $N_{2}$ Cd1 $-O_{1}$ C25                         | 175.3 (2)   | $C_{16}$ $-C_{11}$ $-C_{12}$ $-C_{13}$     | -0.3(5)           |
| $C_{26}^{i}$ Cd1 $-O_{1}$ C25                    | -1150(2)    | $C_{11}$ $-C_{12}$ $-C_{13}$ $-C_{14}$     | -1.7(5)           |
| $N_{3}$ Cd1 $O_{2}$ C25                          | -70.0(2)    | $C_{12}$ $C_{13}$ $C_{14}$ $C_{15}$        | 21(5)             |
| $O_{3^{i}}$ $C_{d1}$ $O_{2}$ $C_{25}$            | 91.9(2)     | $C_{12}$ $C_{13}$ $C_{14}$ $C_{26}$        | -1775(3)          |
| 01 - Cd1 - 02 - C25                              | -0.78(19)   | $C_{13}$ $C_{14}$ $C_{15}$ $C_{16}$        | -0.4(5)           |
| N1 - Cd1 - O2 - C25                              | -1689(2)    | $C_{26}$ $C_{14}$ $C_{15}$ $C_{16}$        | 1793(3)           |
| $04^{i}$ Cd1 02 025                              | 481(2)      | $C_{14}$ $C_{15}$ $C_{16}$ $C_{11}$        | -1.7(5)           |
| $N_{2}^{-}Cd_{1}^{-}O_{2}^{-}C_{2}^{-}S_{2}^{-}$ | -176.38(19) | $C_{14} - C_{15} - C_{16} - S_{1}$         | 1.7(3)<br>1776(2) |
| $C_{26}^{i}$ Cd1 O2 C25                          | 725(2)      | $N_{3} = C_{11} = C_{16} = C_{15}$         | -1781(3)          |
| $N_{20} = Cd_{1} = 02 = C23$                     | 72.3(2)     | $C_{12} = C_{11} = C_{16} = C_{15}$        | 178.1(3)          |
| $N_{3}$ Cd1 N1 C1                                | 120.1(2)    | $N_2 = C_{11} = C_{16} = C_{15}$           | 2.0(3)            |
| $O_1 = Cd_1 = N_1 = C_1$                         | -24.6(2)    | $N_{3}$ $C_{12}$ $C_{11}$ $C_{16}$ $S_{1}$ | 2.0(3)            |
| $O_1 = C_1 = N_1 = C_1$                          | -24.0(3)    | $C_{12}$ $C_{10}$ $C_{10}$ $C_{15}$        | -1/7.4(2)         |
| $O_2 - C_1 - N_1 - C_1$                          | -10.7(2)    | C17 = S1 = C16 = C13                       | 1/8.5(3)          |
| 04 - CdI - NI - CI                               | 125.9(2)    | CI/-SI-CIO-CII                             | -2.4(2)           |
| N2-CdI-NI-CI                                     | 165.2 (3)   | C11 - N3 - C17 - N4                        | 1/8.8 (3)         |
| C25—CdI—NI—CI                                    | -16.1(3)    | Cdl = N3 = C17 = N4                        | -5.6 (5)          |
| C26 <sup>L</sup> —Cd1—N1—C1                      | 97.6 (3)    | C11—N3—C17—S1                              | -0.7 (3)          |
| N3—Cd1—N1—C5                                     | 71.2 (2)    | Cd1—N3—C17—S1                              | 174.85 (14)       |
| O3 <sup>1</sup> —Cd1—N1—C5                       | -91.0 (2)   | C16—S1—C17—N3                              | 1.8 (3)           |
| 01—Cd1—N1—C5                                     | 166.7 (2)   | C16—S1—C17—N4                              | -177.7 (3)        |
| O2—Cd1—N1—C5                                     | -179.5 (2)  | C24—N5—C18—C19                             | 177.1 (3)         |
| $O4^{i}$ —Cd1—N1—C5                              | -42.9 (3)   | C24—N5—C18—C23                             | -1.9 (4)          |
| N2—Cd1—N1—C5                                     | -3.6 (2)    | N5-C18-C19-C20                             | -178.1 (3)        |
| C25—Cd1—N1—C5                                    | 175.2 (2)   | C23—C18—C19—C20                            | 0.9 (5)           |
| C26 <sup>i</sup> —Cd1—N1—C5                      | -71.1 (3)   | C18—C19—C20—C21                            | -0.3 (5)          |
| N3—Cd1—N2—C10                                    | 67.9 (3)    | C19—C20—C21—C22                            | -0.6 (5)          |
| O3 <sup>i</sup> —Cd1—N2—C10                      | -86.4 (3)   | C19—C20—C21—C25                            | 179.3 (3)         |
| O1—Cd1—N2—C10                                    | 11.0 (4)    | C20—C21—C22—C23                            | 0.8 (5)           |
| N1—Cd1—N2—C10                                    | 174.2 (3)   | C25—C21—C22—C23                            | -179.0 (3)        |
| O2-Cd1-N2-C10                                    | -177.8 (2)  | C21—C22—C23—C18                            | -0.2 (5)          |
| O4 <sup>i</sup> —Cd1—N2—C10                      | -32.8 (3)   | C21—C22—C23—S2                             | 176.9 (3)         |
| C25-Cd1-N2-C10                                   | 155.6 (14)  | N5-C18-C23-C22                             | 178.5 (3)         |
| C26 <sup>i</sup> —Cd1—N2—C10                     | -59.8 (3)   | C19—C18—C23—C22                            | -0.6(5)           |
| N3—Cd1—N2—C6                                     | -90.6 (2)   | N5-C18-C23-S2                              | 0.8 (4)           |
| O3 <sup>i</sup> —Cd1—N2—C6                       | 115.1 (2)   | C19—C18—C23—S2                             | -178.3 (3)        |
| O1—Cd1—N2—C6                                     | -147.5 (2)  | C24—S2—C23—C22                             | -177.1 (3)        |
| N1—Cd1—N2—C6                                     | 15.7 (2)    | C24—S2—C23—C18                             | 0.3 (3)           |
| O2-Cd1-N2-C6                                     | 23.7 (3)    | C18—N5—C24—N6                              | -178.6 (3)        |
| O4 <sup>i</sup> —Cd1—N2—C6                       | 168.7 (2)   | C18—N5—C24—S2                              | 2.2 (4)           |
| C25—Cd1—N2—C6                                    | -2.9 (16)   | C23—S2—C24—N5                              | -1.5(3)           |
| C26 <sup>i</sup> —Cd1—N2—C6                      | 141.7 (2)   | C23—S2—C24—N6                              | 179.2 (3)         |
| O3 <sup>i</sup> —Cd1—N3—C17                      | 0.5 (4)     | Cd1-02-C25-01                              | 1.4 (3)           |
| O1—Cd1—N3—C17                                    | 86.9 (3)    | Cd1—O2—C25—C21                             | -179.1 (3)        |
| N1—Cd1—N3—C17                                    | -137.7 (3)  | Cd1—O1—C25—O2                              | -1.5 (3)          |
| O2—Cd1—N3—C17                                    | 137.0 (3)   | Cd1—O1—C25—C21                             | 179.1 (3)         |
| O4 <sup>i</sup> —Cd1—N3—C17                      | 2.3 (3)     | C20—C21—C25—O2                             | 11.1 (5)          |
| N2—Cd1—N3—C17                                    | -72.7 (3)   | C22—C21—C25—O2                             | -169.0 (3)        |
|                                                  | X /         |                                            | - (- )            |

| C25—Cd1—N3—C17               | 111.0 (3)  | C20-C21-C25-O1                | -169.4 (3)   |
|------------------------------|------------|-------------------------------|--------------|
| C26 <sup>i</sup> —Cd1—N3—C17 | 1.6 (3)    | C22—C21—C25—O1                | 10.4 (5)     |
| O3 <sup>i</sup> —Cd1—N3—C11  | 175.6 (2)  | C20-C21-C25-Cd1               | -144 (8)     |
| O1—Cd1—N3—C11                | -97.9 (2)  | C22—C21—C25—Cd1               | 36 (8)       |
| N1—Cd1—N3—C11                | 37.5 (2)   | N3—Cd1—C25—O2                 | 116.9 (2)    |
| O2—Cd1—N3—C11                | -47.8 (2)  | O3 <sup>i</sup> —Cd1—C25—O2   | -88.2 (2)    |
| O4 <sup>i</sup> —Cd1—N3—C11  | 177.4 (2)  | O1—Cd1—C25—O2                 | 178.6 (3)    |
| N2—Cd1—N3—C11                | 102.4 (2)  | N1—Cd1—C25—O2                 | 11.6 (2)     |
| C25—Cd1—N3—C11               | -73.8 (2)  | O4 <sup>i</sup> —Cd1—C25—O2   | -141.69 (19) |
| C26 <sup>i</sup> —Cd1—N3—C11 | 176.8 (2)  | N2-Cd1-C25-O2                 | 29.8 (16)    |
| C5—N1—C1—C2                  | 1.7 (5)    | C26 <sup>i</sup> —Cd1—C25—O2  | -114.5 (2)   |
| Cd1—N1—C1—C2                 | -167.2 (3) | N3—Cd1—C25—O1                 | -61.8 (2)    |
| N1—C1—C2—C3                  | -0.4 (5)   | O3 <sup>i</sup> —Cd1—C25—O1   | 93.2 (2)     |
| C1—C2—C3—C4                  | -1.3 (5)   | N1-Cd1-C25-O1                 | -167.02 (19) |
| C2—C3—C4—C5                  | 1.8 (5)    | O2—Cd1—C25—O1                 | -178.6 (3)   |
| C1—N1—C5—C4                  | -1.2 (5)   | O4 <sup>i</sup> Cd1C25O1      | 39.7 (2)     |
| Cd1—N1—C5—C4                 | 168.0 (2)  | N2-Cd1-C25-O1                 | -148.9 (14)  |
| C1—N1—C5—C6                  | -177.1 (3) | C26 <sup>i</sup> —Cd1—C25—O1  | 66.9 (2)     |
| Cd1—N1—C5—C6                 | -8.0 (4)   | N3—Cd1—C25—C21                | -88 (8)      |
| C3—C4—C5—N1                  | -0.5 (5)   | O3 <sup>i</sup> —Cd1—C25—C21  | 67 (8)       |
| C3—C4—C5—C6                  | 175.2 (3)  | O1—Cd1—C25—C21                | -26 (8)      |
| C10—N2—C6—C7                 | -3.6 (5)   | N1-Cd1-C25-C21                | 167 (8)      |
| Cd1—N2—C6—C7                 | 156.1 (3)  | O2—Cd1—C25—C21                | 155 (8)      |
| C10—N2—C6—C5                 | 174.5 (3)  | O4 <sup>i</sup> -Cd1-C25-C21  | 14 (8)       |
| Cd1—N2—C6—C5                 | -25.7 (4)  | N2-Cd1-C25-C21                | -175 (7)     |
| N1-C5-C6-N2                  | 23.0 (4)   | C26 <sup>i</sup> —Cd1—C25—C21 | 41 (8)       |
| C4—C5—C6—N2                  | -153.0 (3) | Cd1 <sup>ii</sup> —O4—C26—O3  | -0.3 (3)     |
| N1-C5-C6-C7                  | -158.8 (3) | Cd1 <sup>ii</sup> —O4—C26—C14 | -179.3 (2)   |
| C4—C5—C6—C7                  | 25.2 (5)   | Cd1 <sup>ii</sup> —O3—C26—O4  | 0.3 (3)      |
| N2—C6—C7—C8                  | 2.2 (6)    | Cd1 <sup>ii</sup> —O3—C26—C14 | 179.3 (2)    |
| C5—C6—C7—C8                  | -175.8 (3) | C13—C14—C26—O4                | 178.0 (3)    |
| C6—C7—C8—C9                  | 1.1 (6)    | C15—C14—C26—O4                | -1.6 (4)     |
| C7—C8—C9—C10                 | -2.8 (6)   | C13—C14—C26—O3                | -1.0 (4)     |
| C6—N2—C10—C9                 | 1.7 (5)    | C15—C14—C26—O3                | 179.4 (3)    |
| Cd1—N2—C10—C9                | -156.1 (3) | C13—C14—C26—Cd1 <sup>ii</sup> | 25 (9)       |
| C8—C9—C10—N2                 | 1.5 (6)    | C15—C14—C26—Cd1 <sup>ii</sup> | -155 (9)     |
|                              |            |                               |              |

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) *x*-1, *y*, *z*.

#### Hydrogen-bond geometry (Å, °)

| D—H···A                             | D—H  | H···A | D···A     | D—H···A |
|-------------------------------------|------|-------|-----------|---------|
| N6—H6A···O3 <sup>iii</sup>          | 0.88 | 2.10  | 2.917 (4) | 155     |
| N6—H6 <i>B</i> ····O3 <sup>iv</sup> | 0.88 | 2.12  | 2.996 (4) | 173     |
| N4—H4A····O4 <sup>i</sup>           | 0.88 | 2.25  | 3.101 (4) | 162     |
| N4—H4 $B$ ····N5 <sup>v</sup>       | 0.88 | 2.21  | 3.066 (4) | 163     |

Symmetry codes: (i) *x*+1, *y*, *z*; (iii) –*x*, –*y*+2, –*z*–1; (iv) *x*+1, *y*, *z*–1; (v) *x*, *y*–1, *z*+1.